F(a) Spectrum of Pruned Baker's Map

نویسندگان

  • Paul Jenkins
  • Mark V. Daly
چکیده

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. F(a) Spectrum of Pruned Baker's Map Paul Jenkins , Mark V. Daly 1 , and Daniel M. H e f f e r n a n 1 ' 2 ' 3 1 School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland 2 School of Theoretical Physics, Dublin Institute of Advanced Studies, Dublin 4, Ireland 3 Department of Mathematical Physics, St. Patrick's College, Maynooth, C. Kildare, Ireland

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision Diagram Method for Calculation of Pruned Walsh Transform

ÐDiscrete Walsh transform is an orthogonal transform often used in spectral methods for different applications in signal processing and logic design. FFT-like algorithms make it possible to efficiently calculate the discrete Walsh spectrum. However, for their exponential complexity, these algorithms are practically unsuitable for large functions. For this reason, a Binary Decision Diagram (BDD)...

متن کامل

Decoherence and linear entropy increase in the quantum baker's map.

We show that the coarse-grained quantum baker's map exhibits a linear entropy increase at an asymptotic rate given by the Kolmogorov-Sinai entropy of the classical chaotic baker's map. The starting point of our analysis is a symbolic representation of the map on a string of N qubits, i.e., an N-bit register of a quantum computer. To coarse grain the quantum evolution, we make use of the decoher...

متن کامل

Classical limit in terms of symbolic dynamics for the quantum baker's map

We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small effective Planck's constant.

متن کامل

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

متن کامل

Absorbing sets and Baker domains for holomorphic maps

We consider holomorphic maps f : U → U for a hyperbolic domain U in the complex plane, such that the iterates of f converge to a boundary point ζ of U . By a previous result of the authors, for such maps there exist nice absorbing domains W ⊂ U . In this paper we show that W can be chosen to be simply connected, if f has parabolic I type in the sense of the Baker–Pommerenke–Cowen classification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012